C++实现二叉树基本操作详解

2025-05-27 0 17

树是一种重要的非线性数据结构,二叉树是树型结构的一种重要类型。本学年论文介绍了二叉树的定义,二叉树的存储结构,二叉树的相关术语,以此引入二叉树这一概念,为展开二叉树的基本操作做好理论铺垫。二叉树的基本操作主要包含以下几个模块:二叉树的遍历方法,计算二叉树的结点个数,计算二叉树的叶子结点个数,二叉树深度的求解等内容。

前序遍历(递归&非递归)

  • 访问根节点
  • 前序访问左子树
  • 前序访问右子树
?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
//前序非递归

void PrevOrder()

{

stack<Node*> s;

Node *cur = _root;

while (cur || !s.empty())

{

while (cur)

{

cout << cur->_data << " ";

s.push(cur);

cur = cur->_left;

}

//此时当前节点的左子树已遍历完毕

Node *tmp = s.top();

s.pop();

cur = tmp->_right;

}

cout << endl;

}

//前序递归

void PrevOrderR()

{

_PrevOrder(_root);

cout << endl;

}

void _PrevOrder(Node *root)

{

if (root == NULL) //必须有递归出口!!!

return;

cout << root->_data << " ";

_PrevOrder(root->_left);

_PrevOrder(root->_right);

}

中序遍历(递归&非递归)

  • 中序访问左子树
  • 访问根节点
  • 中序访问右子树
?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
//中序非递归

void InOrder()

{

stack<Node*> s;

Node *cur = _root;

while (cur || !s.empty())

{

while (cur)

{

s.push(cur);

cur = cur->_left;

}

//此时当前节点的左子树已遍历完毕

Node *tmp = s.top();

cout << tmp->_data << " ";

s.pop();

cur = tmp->_right;

}

cout << endl;

}

//中序递归

void InOrderR()

{

_InOrder(_root);

cout << endl;

}

void _InOrder(Node *root)

{

if (root == NULL)

return;

_InOrder(root->_left);

cout << root->_data << " ";

_InOrder(root->_right);

}

后序遍历(递归&非递归)

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47
//后序非递归

//后序遍历可能会出现死循环,所以要记录下前一个访问的节点

void PostOrder()

{

stack<Node*> s;

Node *cur = _root;

Node *prev = NULL;

while (cur || !s.empty())

{

while (cur)

{

s.push(cur);

cur = cur->_left;

}

Node *tmp = s.top();

if (tmp->_right && tmp->_right != prev)

{

cur = tmp->_right;

}

else

{

cout << tmp->_data << " ";

prev = tmp;

s.pop();

}

}

cout << endl;

}

//后序递归

void PostOrderR()

{

_PostOrder(_root);

cout << endl;

}

void _PostOrder(Node *root)

{

if (root == NULL)

return;

_PostOrder(root->_left);

_PostOrder(root->_right);

cout << root->_data << " ";

}

层序遍历

从根节点开始,依次访问每层结点。
利用队列先进先出的特性,把每层结点从左至右依次放入队列。

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
void LevelOrder() //利用队列!!!

{

queue<Node*> q;

Node *front = NULL;

//1.push根节点

if (_root)

{

q.push(_root);

}

//2.遍历当前节点,push当前节点的左右孩子,pop当前节点

//3.遍历当前节点的左孩子,再遍历右孩子,循环直至队列为空

while (!q.empty())

{

front = q.front();

cout << front->_data << " ";

if (front->_left)

q.push(front->_left);

if (front->_right)

q.push(front->_right);

q.pop();

}

cout << endl;

}

二叉树的高度

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18
size_t Depth()

{

return _Depth(_root);

}

size_t _Depth(Node *root)

{

if (root == NULL)

return 0;

else if (root->_left == NULL && root->_right == NULL)

return 1;

else

{

size_t leftDepth = _Depth(root->_left) + 1;

size_t rightDepth = _Depth(root->_right) + 1;

return leftDepth > rightDepth ? leftDepth : rightDepth;

}

}

求叶子节点的个数

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14
size_t LeafSize()

{

return _LeafSize(_root);

}

size_t _LeafSize(Node *root)

{

if (root == NULL)

return 0;

else if (root->_left == NULL && root->_right == NULL)

return 1;

else

return _LeafSize(root->_left) + _LeafSize(root->_right);

}

二叉树第k层的节点个数

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14
size_t GetKLevel(int k)

{

return _GetKLevel(_root, k);

}

size_t _GetKLevel(Node *root, int k)

{

if (root == NULL)

return 0;

else if (k == 1)

return 1;

else

return _GetKLevel(root->_left, k - 1) + _GetKLevel(root->_right, k - 1);

}

完整代码如下:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334
template<class T>

struct BinaryTreeNode

{

T _data;

BinaryTreeNode *_left;

BinaryTreeNode *_right;

BinaryTreeNode(const T& d)

:_data(d)

, _left(NULL)

, _right(NULL)

{}

};

template<class T>

class BinaryTree

{

public:

typedef BinaryTreeNode<T> Node;

BinaryTree()

:_root(NULL)

{}

BinaryTree(T *arr, size_t n, const T& invalid)

{

size_t index = 0;

_root = _CreateBinaryTree(arr, n, invalid, index);

}

BinaryTree(const BinaryTree<T>& t)

:_root(NULL)

{

_root = _CopyTree(t._root);

}

BinaryTree<T>& operator=(const BinaryTree<T>& t)

{

if (this != t)

{

Node *tmp = new Node(t._root);

if (tmp != NULL)

{

delete _root;

_root = tmp;

}

}

return *this;

}

~BinaryTree()

{

_DestroyTree(_root);

cout << endl;

}

//前序非递归

void PrevOrder()

{

stack<Node*> s;

Node *cur = _root;

while (cur || !s.empty())

{

while (cur)

{

cout << cur->_data << " ";

s.push(cur);

cur = cur->_left;

}

//此时当前节点的左子树已遍历完毕

Node *tmp = s.top();

s.pop();

cur = tmp->_right;

}

cout << endl;

}

//前序递归

void PrevOrderR()

{

_PrevOrder(_root);

cout << endl;

}

//中序非递归

void InOrder()

{

stack<Node*> s;

Node *cur = _root;

while (cur || !s.empty())

{

while (cur)

{

s.push(cur);

cur = cur->_left;

}

//此时当前节点的左子树已遍历完毕

Node *tmp = s.top();

cout << tmp->_data << " ";

s.pop();

cur = tmp->_right;

}

cout << endl;

}

//中序递归

void InOrderR()

{

_InOrder(_root);

cout << endl;

}

//后序非递归

//后序遍历可能会出现死循环,所以要记录下前一个访问的节点

void PostOrder()

{

stack<Node*> s;

Node *cur = _root;

Node *prev = NULL;

while (cur || !s.empty())

{

while (cur)

{

s.push(cur);

cur = cur->_left;

}

Node *tmp = s.top();

if (tmp->_right && tmp->_right != prev)

{

cur = tmp->_right;

}

else

{

cout << tmp->_data << " ";

prev = tmp;

s.pop();

}

}

cout << endl;

}

//后序递归

void PostOrderR()

{

_PostOrder(_root);

cout << endl;

}

void LevelOrder() //利用队列!!!

{

queue<Node*> q;

Node *front = NULL;

//1.push根节点

if (_root)

{

q.push(_root);

}

//2.遍历当前节点,push当前节点的左右孩子,pop当前节点

//3.遍历当前节点的左孩子,再遍历右孩子,循环直至队列为空

while (!q.empty())

{

front = q.front();

cout << front->_data << " ";

if (front->_left)

q.push(front->_left);

if (front->_right)

q.push(front->_right);

q.pop();

}

cout << endl;

}

size_t Size()

{

return _Size(_root);

}

size_t LeafSize()

{

return _LeafSize(_root);

}

size_t GetKLevel(int k)

{

return _GetKLevel(_root, k);

}

size_t Depth()

{

return _Depth(_root);

}

Node* Find(const T& d)

{

return _Find(_root, d);

}

protected:

Node* _CreateBinaryTree(T *arr, size_t n, const T& invalid, size_t& index)

{

Node *root = NULL;

if (index < n && arr[index] != invalid)

{

root = new Node(arr[index]);

index++;

root->_left = _CreateBinaryTree(arr, n, invalid, index);

index++;

root->_right = _CreateBinaryTree(arr, n, invalid, index);

}

return root;

}

Node* _CopyTree(Node *root)

{

Node *newRoot = NULL;

if (root)

{

newRoot = new Node(root->_data);

newRoot->_left = _CopyTree(root->_left);

newRoot->_right = _CopyTree(root->_right);

}

return newRoot;

}

void _DestroyTree(Node *root)

{

if (root)

{

_Destroy(root->_left);

_Destroy(root->_right);

delete root;

}

}

void _PrevOrder(Node *root)

{

if (root == NULL) //必须有递归出口!!!

return;

cout << root->_data << " ";

_PrevOrder(root->_left);

_PrevOrder(root->_right);

}

void _InOrder(Node *root)

{

if (root == NULL)

return;

_InOrder(root->_left);

cout << root->_data << " ";

_InOrder(root->_right);

}

void _PostOrder(Node *root)

{

if (root == NULL)

return;

_PostOrder(root->_left);

_PostOrder(root->_right);

cout << root->_data << " ";

}

size_t _Size(Node *root)

{

if (root == NULL)

return 0;

else

return _Size(root->_left) + _Size(root->_right) + 1;

}

size_t _LeafSize(Node *root)

{

if (root == NULL)

return 0;

else if (root->_left == NULL && root->_right == NULL)

return 1;

else

return _LeafSize(root->_left) + _LeafSize(root->_right);

}

size_t _GetKLevel(Node *root, int k)

{

if (root == NULL)

return 0;

else if (k == 1)

return 1;

else

return _GetKLevel(root->_left, k - 1) + _GetKLevel(root->_right, k - 1);

}

size_t _Depth(Node *root)

{

if (root == NULL)

return 0;

else if (root->_left == NULL && root->_right == NULL)

return 1;

else

{

size_t leftDepth = _Depth(root->_left) + 1;

size_t rightDepth = _Depth(root->_right) + 1;

return leftDepth > rightDepth ? leftDepth : rightDepth;

}

}

Node* _Find(Node *root, const T& d)

{

if (root == NULL)

return NULL;

else if (root->_data == d)

return root;

else if (Node *ret = _Find(root->_left, d))

return ret;

else

_Find(root->_right, d);

}

protected:

Node *_root;

};

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持快网idc。

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。

快网idc优惠网 建站教程 C++实现二叉树基本操作详解 https://www.kuaiidc.com/72469.html

相关文章

发表评论
暂无评论