Java多线程并发编程(互斥锁Reentrant Lock)

2025-05-29 0 42

Java 中的锁通常分为两种:

通过关键字 synchronized 获取的锁,我们称为同步锁,上一篇有介绍到:Java 多线程并发编程 Synchronized 关键字。
java.util.concurrent(JUC)包里的锁,如通过继承接口 Lock 而实现的 ReentrantLock(互斥锁),继承 ReadWriteLock 实现的 ReentrantReadWriteLock(读写锁)。
本篇主要介绍 ReentrantLock(互斥锁)。

ReentrantLock(互斥锁

ReentrantLock 互斥锁,在同一时间只能被一个线程所占有,在被持有后并未释放之前,其他线程若想获得该锁只能等待或放弃。

ReentrantLock 互斥锁是可重入锁,即某一线程可多次获得该锁。

公平锁 and 非公平锁

?

1

2

3

4

5

6

7
public ReentrantLock() {

sync = new NonfairSync();

}

public ReentrantLock(boolean fair) {

sync = fair ? new FairSync() : new NonfairSync();

}

由 ReentrantLock 的构造函数可见,在实例化 ReentrantLock 的时候我们可以选择实例化一个公平锁或非公平锁,而默认会构造一个非公平锁。

公平锁与非公平锁区别在于竞争锁时的有序与否。公平锁可确保有序性(FIFO 队列),非公平锁不能确保有序性(即使也有 FIFO 队列)。

然而,公平是要付出代价的,公平锁比非公平锁要耗性能,所以在非必须确保公平的条件下,一般使用非公平锁可提高吞吐率。所以 ReentrantLock 默认的构造函数也是“不公平”的。

一般使用

DEMO1:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43
public class Test {

private static class Counter {

private ReentrantLock mReentrantLock = new ReentrantLock();

public void count() {

mReentrantLock.lock();

try {

for (int i = 0; i < 6; i++) {

System.out.println(Thread.currentThread().getName() + ", i = " + i);

}

} finally {

// 必须在 finally 释放锁

mReentrantLock.unlock();

}

}

}

private static class MyThread extends Thread {

private Counter mCounter;

public MyThread(Counter counter) {

mCounter = counter;

}

@Override

public void run() {

super.run();

mCounter.count();

}

}

public static void main(String[] var0) {

Counter counter = new Counter();

// 注:myThread1 和 myThread2 是调用同一个对象 counter

MyThread myThread1 = new MyThread(counter);

MyThread myThread2 = new MyThread(counter);

myThread1.start();

myThread2.start();

}

}

DEMO1 输出:

?

1

2

3

4

5

6

7

8

9

10

11

12
Thread-0, i = 0

Thread-0, i = 1

Thread-0, i = 2

Thread-0, i = 3

Thread-0, i = 4

Thread-0, i = 5

Thread-1, i = 0

Thread-1, i = 1

Thread-1, i = 2

Thread-1, i = 3

Thread-1, i = 4

Thread-1, i = 5

DEMO1 仅使用了 ReentrantLock 的 lock 和 unlock 来提现一般锁的特性,确保线程的有序执行。此种场景 synchronized 也适用。

锁的作用域

DEMO2:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51
public class Test {

private static class Counter {

private ReentrantLock mReentrantLock = new ReentrantLock();

public void count() {

for (int i = 0; i < 6; i++) {

mReentrantLock.lock();

// 模拟耗时,突出线程是否阻塞

try{

Thread.sleep(100);

System.out.println(Thread.currentThread().getName() + ", i = " + i);

} catch (InterruptedException e) {

e.printStackTrace();

} finally {

// 必须在 finally 释放锁

mReentrantLock.unlock();

}

}

}

public void doOtherThing(){

for (int i = 0; i < 6; i++) {

// 模拟耗时,突出线程是否阻塞

try {

Thread.sleep(100);

} catch (InterruptedException e) {

e.printStackTrace();

}

System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);

}

}

}

public static void main(String[] var0) {

final Counter counter = new Counter();

new Thread(new Runnable() {

@Override

public void run() {

counter.count();

}

}).start();

new Thread(new Runnable() {

@Override

public void run() {

counter.doOtherThing();

}

}).start();

}

}

DEMO2 输出:

?

1

2

3

4

5

6

7

8

9

10

11

12
Thread-0, i = 0

Thread-1 doOtherThing, i = 0

Thread-0, i = 1

Thread-1 doOtherThing, i = 1

Thread-0, i = 2

Thread-1 doOtherThing, i = 2

Thread-0, i = 3

Thread-1 doOtherThing, i = 3

Thread-0, i = 4

Thread-1 doOtherThing, i = 4

Thread-0, i = 5

Thread-1 doOtherThing, i = 5

DEMO3:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57
public class Test {

private static class Counter {

private ReentrantLock mReentrantLock = new ReentrantLock();

public void count() {

for (int i = 0; i < 6; i++) {

mReentrantLock.lock();

// 模拟耗时,突出线程是否阻塞

try{

Thread.sleep(100);

System.out.println(Thread.currentThread().getName() + ", i = " + i);

} catch (InterruptedException e) {

e.printStackTrace();

} finally {

// 必须在 finally 释放锁

mReentrantLock.unlock();

}

}

}

public void doOtherThing(){

mReentrantLock.lock();

try{

for (int i = 0; i < 6; i++) {

// 模拟耗时,突出线程是否阻塞

try {

Thread.sleep(100);

} catch (InterruptedException e) {

e.printStackTrace();

}

System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);

}

}finally {

mReentrantLock.unlock();

}

}

}

public static void main(String[] var0) {

final Counter counter = new Counter();

new Thread(new Runnable() {

@Override

public void run() {

counter.count();

}

}).start();

new Thread(new Runnable() {

@Override

public void run() {

counter.doOtherThing();

}

}).start();

}

}

DEMO3 输出:

?

1

2

3

4

5

6

7

8

9

10

11

12
Thread-0, i = 0

Thread-0, i = 1

Thread-0, i = 2

Thread-0, i = 3

Thread-0, i = 4

Thread-0, i = 5

Thread-1 doOtherThing, i = 0

Thread-1 doOtherThing, i = 1

Thread-1 doOtherThing, i = 2

Thread-1 doOtherThing, i = 3

Thread-1 doOtherThing, i = 4

Thread-1 doOtherThing, i = 5

结合 DEMO2 和 DEMO3 输出可见,锁的作用域在于 mReentrantLock,因为所来自于 mReentrantLock。

可终止等待

DEMO4:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79
public class Test {

static final int TIMEOUT = 300;

private static class Counter {

private ReentrantLock mReentrantLock = new ReentrantLock();

public void count() {

try{

//lock() 不可中断

mReentrantLock.lock();

// 模拟耗时,突出线程是否阻塞

for (int i = 0; i < 6; i++) {

long startTime = System.currentTimeMillis();

while (true) {

if (System.currentTimeMillis() - startTime > 100)

break;

}

System.out.println(Thread.currentThread().getName() + ", i = " + i);

}

} finally {

// 必须在 finally 释放锁

mReentrantLock.unlock();

}

}

public void doOtherThing(){

try{

//lockInterruptibly() 可中断,若线程没有中断,则获取锁

mReentrantLock.lockInterruptibly();

for (int i = 0; i < 6; i++) {

// 模拟耗时,突出线程是否阻塞

long startTime = System.currentTimeMillis();

while (true) {

if (System.currentTimeMillis() - startTime > 100)

break;

}

System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);

}

} catch (InterruptedException e) {

System.out.println(Thread.currentThread().getName() + " 中断 ");

}finally {

// 若当前线程持有锁,则释放

if(mReentrantLock.isHeldByCurrentThread()){

mReentrantLock.unlock();

}

}

}

}

public static void main(String[] var0) {

final Counter counter = new Counter();

new Thread(new Runnable() {

@Override

public void run() {

counter.count();

}

}).start();

Thread thread2 = new Thread(new Runnable() {

@Override

public void run() {

counter.doOtherThing();

}

});

thread2.start();

long start = System.currentTimeMillis();

while (true){

if (System.currentTimeMillis() - start > TIMEOUT) {

// 若线程还在运行,尝试中断

if(thread2.isAlive()){

System.out.println(" 不等了,尝试中断 ");

thread2.interrupt();

}

break;

}

}

}

}

DEMO4 输出:

?

1

2

3

4

5

6

7

8
Thread-0, i = 0

Thread-0, i = 1

Thread-0, i = 2

不等了,尝试中断

Thread-1 中断

Thread-0, i = 3

Thread-0, i = 4

Thread-0, i = 5

线程 thread2 等待 300ms 后 timeout,中断等待成功。

若把 TIMEOUT 改成 3000ms,输出结果:(正常运行)

?

1

2

3

4

5

6

7

8

9

10

11

12
Thread-0, i = 0

Thread-0, i = 1

Thread-0, i = 2

Thread-0, i = 3

Thread-0, i = 4

Thread-0, i = 5

Thread-1 doOtherThing, i = 0

Thread-1 doOtherThing, i = 1

Thread-1 doOtherThing, i = 2

Thread-1 doOtherThing, i = 3

Thread-1 doOtherThing, i = 4

Thread-1 doOtherThing, i = 5

定时锁

DEMO5:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73
public class Test {

static final int TIMEOUT = 3000;

private static class Counter {

private ReentrantLock mReentrantLock = new ReentrantLock();

public void count() {

try{

//lock() 不可中断

mReentrantLock.lock();

// 模拟耗时,突出线程是否阻塞

for (int i = 0; i < 6; i++) {

long startTime = System.currentTimeMillis();

while (true) {

if (System.currentTimeMillis() - startTime > 100)

break;

}

System.out.println(Thread.currentThread().getName() + ", i = " + i);

}

} finally {

// 必须在 finally 释放锁

mReentrantLock.unlock();

}

}

public void doOtherThing(){

try{

//tryLock(long timeout, TimeUnit unit) 尝试获得锁

boolean isLock = mReentrantLock.tryLock(300, TimeUnit.MILLISECONDS);

System.out.println(Thread.currentThread().getName() + " isLock:" + isLock);

if(isLock){

for (int i = 0; i < 6; i++) {

// 模拟耗时,突出线程是否阻塞

long startTime = System.currentTimeMillis();

while (true) {

if (System.currentTimeMillis() - startTime > 100)

break;

}

System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);

}

}else{

System.out.println(Thread.currentThread().getName() + " timeout");

}

} catch (InterruptedException e) {

System.out.println(Thread.currentThread().getName() + " 中断 ");

}finally {

// 若当前线程持有锁,则释放

if(mReentrantLock.isHeldByCurrentThread()){

mReentrantLock.unlock();

}

}

}

}

public static void main(String[] var0) {

final Counter counter = new Counter();

new Thread(new Runnable() {

@Override

public void run() {

counter.count();

}

}).start();

Thread thread2 = new Thread(new Runnable() {

@Override

public void run() {

counter.doOtherThing();

}

});

thread2.start();

}

}

DEMO5 输出:

?

1

2

3

4

5

6

7

8
Thread-0, i = 0

Thread-0, i = 1

Thread-0, i = 2

Thread-1 isLock:false

Thread-1 timeout

Thread-0, i = 3

Thread-0, i = 4

Thread-0, i = 5

tryLock() 尝试获得锁,tryLock(long timeout, TimeUnit unit) 在给定的 timeout 时间内尝试获得锁,若超时,则不带锁往下走,所以必须加以判断。

ReentrantLock or synchronized

ReentrantLock 、synchronized 之间如何选择?

ReentrantLock 在性能上 比 synchronized 更胜一筹。

ReentrantLock 需格外小心,因为需要显式释放锁,lock() 后记得 unlock(),而且必须在 finally 里面,否则容易造成死锁。
synchronized 隐式自动释放锁,使用方便。

ReentrantLock 扩展性好,可中断锁,定时锁,自由控制。
synchronized 一但进入阻塞等待,则无法中断等待。

原文链接:http://hackeris.me/2017/04/22/concurrent_series_4/

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。

快网idc优惠网 建站教程 Java多线程并发编程(互斥锁Reentrant Lock) https://www.kuaiidc.com/116673.html

相关文章

发表评论
暂无评论