java算法实现红黑树完整代码示例

2025-05-29 0 78

红黑树

定义

红黑树(英语:red–black tree)是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组。

红黑树的另一种定义是含有红黑链接并满足下列条件的二叉查找树:

红链接均为左链接;没有任何一个结点同时和两条红链接相连;该树是完美黑色平衡的,即任意空链接到根结点的路径上的黑链接数量相同。

满足这样定义的红黑树和相应的2-3树是一一对应的。

java算法实现红黑树完整代码示例

旋转

旋转又分为左旋和右旋。通常左旋操作用于将一个向右倾斜的红色链接旋转为向左链接。对比操作前后,可以看出,该操作实际上是将红线链接的两个节点中的一个较大的节点移动到根节点上。

左旋操作如下图:

java算法实现红黑树完整代码示例

右旋旋操作如下图:

java算法实现红黑树完整代码示例

即:

java算法实现红黑树完整代码示例

复杂度

红黑树的平均高度大约为lgn。

下图是红黑树在各种情况下的时间复杂度,可以看出红黑树是2-3查找树的一种实现,他能保证最坏情况下仍然具有对数的时间复杂度。

java算法实现红黑树完整代码示例

java代码

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725
import java.util.nosuchelementexception;

import java.util.scanner;

public class redblackbst<key extends="" key="">, value> {

private static final boolean red = true;

private static final boolean black = false;

private node root; //root of the bst

private class node {

private key key; //key

private value val; //associated data

private node left, right; //links to left and right subtrees

private boolean color; //color of parent link

private int size; //subtree count

public node(key key, value val, boolean color, int size) {

this.key = key;

this.val = val;

this.color = color;

this.size = size;

}

}

//is node x red?

private boolean isred(node x) {

if(x == null) {

return false;

}

return x.color == red;

}

//number of node in subtree rooted at x; 0 if x is null

private int size(node x) {

if(x == null) {

return 0;

}

return x.size;

}

/**

* return the number of key-value pairs in this symbol table

* @return the number of key-value pairs in this symbol table

*/

public int size() {

return size(root);

}

/**

* is this symbol table empty?

* @return true if this symbol table is empty and false otherwise

*/

public boolean isempty() {

return root == null;

}

/**

* return the value associated with the given key

* @param key the key

* @return the value associated with the given key if the key is in the symbol table, and null if it is not.

*/

public value get(key key) {

if(key == null) {

throw new nullpointerexception("argument to get() is null");

}

return get(root, key);

}

//value associated with the given key in subtree rooted at x; null if no such key

private value get(node x, key key) {

while(x != null) {

int cmp = key.compareto(x.key);

if(cmp < 0) {

x = x.left;

}

else if(cmp > 0) {

x = x.right;

}

else {

return x.val;

}

}

return null;

}

/**

* does this symbol table contain the given key?

* @param key the key

* @return true if this symbol table contains key and false otherwise

*/

public boolean contains(key key) {

return get(key) != null;

}

/***************************************************************************

* red-black tree insertion.

***************************************************************************/

/**

* inserts the specified key-value pair into the symbol table, overwriting the old

* value with the new value if the symbol table already contains the specified key.

* deletes the specified key (and its associated value) from this symbol table

* if the specified value is null.

*

* @param key the key

* @param val the value

* @throws nullpointerexception if key is null

*/

public void put(key key, value val) {

if (key == null) {

throw new nullpointerexception("first argument to put() is null");

}

if (val == null) {

delete(key);

return;

}

root = put(root, key, val);

root.color = black;

}

// insert the key-value pair in the subtree rooted at h

private node put(node h, key key, value val) {

if(h == null) {

return new node(key, val, red, 1);

}

int cmp = key.compareto(h.key);

if(cmp < 0) {

h.left = put(h.left, key, val);

}

else if(cmp > 0) {

h.right = put(h.right, key, val);

}

else {

h.val = val;

}

if(isred(h.right) && !isred(h.left)) {

h = rotateleft(h);

}

if(isred(h.left) && isred(h.left.left)) {

h = rotateright(h);

}

if(isred(h.left) && isred(h.right)) {

flipcolors(h);

}

h.size = size(h.left) + size(h.right) + 1;

return h;

}

/***************************************************************************

* red-black tree deletion.

***************************************************************************/

/**

* removes the smallest key and associated value from the symbol table.

* @throws nosuchelementexception if the symbol table is empty

*/

public void deletemin() {

if (isempty()) {

throw new nosuchelementexception("bst underflow");

}

// if both children of root are black, set root to red

if (!isred(root.left) && !isred(root.right))

root.color = red;

root = deletemin(root);

if (!isempty()) root.color = black;

// assert check();

}

// delete the key-value pair with the minimum key rooted at h

// delete the key-value pair with the minimum key rooted at h

private node deletemin(node h) {

if (h.left == null){

return null;

}

if (!isred(h.left) && !isred(h.left.left)) {

h = moveredleft(h);

}

h.left = deletemin(h.left);

return balance(h);

}

/**

* removes the largest key and associated value from the symbol table.

* @throws nosuchelementexception if the symbol table is empty

*/

public void deletemax() {

if (isempty()) {

throw new nosuchelementexception("bst underflow");

}

// if both children of root are black, set root to red

if (!isred(root.left) && !isred(root.right))

root.color = red;

root = deletemax(root);

if (!isempty()) root.color = black;

// assert check();

}

// delete the key-value pair with the maximum key rooted at h

// delete the key-value pair with the maximum key rooted at h

private node deletemax(node h) {

if (isred(h.left))

h = rotateright(h);

if (h.right == null)

return null;

if (!isred(h.right) && !isred(h.right.left))

h = moveredright(h);

h.right = deletemax(h.right);

return balance(h);

}

/**

* remove the specified key and its associated value from this symbol table

* (if the key is in this symbol table).

*

* @param key the key

* @throws nullpointerexception if key is null

*/

public void delete(key key) {

if (key == null) {

throw new nullpointerexception("argument to delete() is null");

}

if (!contains(key)) {

return;

}

//if both children of root are black, set root to red

if(!isred(root.left) && !isred(root.right)) {

root.color = red;

}

root = delete(root, key);

if(!isempty()) {

root.color = black;

}

}

// delete the key-value pair with the given key rooted at h

// delete the key-value pair with the given key rooted at h

private node delete(node h, key key) {

if(key.compareto(h.key) < 0) {

if(!isred(h.left) && !isred(h.left.left)) {

h = moveredleft(h);

}

h.left = delete(h.left, key);

}

else {

if(isred(h.left)) {

h = rotateright(h);

}

if (key.compareto(h.key) == 0 && (h.right == null)) {

return null;

}

if (!isred(h.right) && !isred(h.right.left)) {

h = moveredright(h);

}

if (key.compareto(h.key) == 0) {

node x = min(h.right);

h.key = x.key;

h.val = x.val;

h.right = deletemin(h.right);

}

else {

h.right = delete(h.right, key);

}

}

return balance(h);

}

/***************************************************************************

* red-black tree helper functions.

***************************************************************************/

// make a left-leaning link lean to the right

// make a left-leaning link lean to the right

private node rotateright(node h) {

// assert (h != null) && isred(h.left);

node x = h.left;

h.left = x.right;

x.right = h;

x.color = x.right.color;

x.right.color = red;

x.size = h.size;

h.size = size(h.left) + size(h.right) + 1;

return x;

}

// make a right-leaning link lean to the left

// make a right-leaning link lean to the left

private node rotateleft(node h) {

// assert (h != null) && isred(h.right);

node x = h.right;

h.right = x.left;

x.left = h;

x.color = x.left.color;

x.left.color = red;

x.size = h.size;

h.size = size(h.left) + size(h.right) + 1;

return x;

}

// flip the colors of a node and its two children

// flip the colors of a node and its two children

private void flipcolors(node h) {

// h must have opposite color of its two children

// assert (h != null) && (h.left != null) && (h.right != null);

// assert (!isred(h) && isred(h.left) && isred(h.right))

// || (isred(h) && !isred(h.left) && !isred(h.right));

h.color = !h.color;

h.left.color = !h.left.color;

h.right.color = !h.right.color;

}

// assuming that h is red and both h.left and h.left.left

// are black, make h.left or one of its children red.

// assuming that h is red and both h.left and h.left.left

// are black, make h.left or one of its children red.

private node moveredleft(node h) {

// assert (h != null);

// assert isred(h) && !isred(h.left) && !isred(h.left.left);

flipcolors(h);

if (isred(h.right.left)) {

h.right = rotateright(h.right);

h = rotateleft(h);

flipcolors(h);

}

return h;

}

// assuming that h is red and both h.right and h.right.left

// are black, make h.right or one of its children red.

// assuming that h is red and both h.right and h.right.left

// are black, make h.right or one of its children red.

private node moveredright(node h) {

// assert (h != null);

// assert isred(h) && !isred(h.right) && !isred(h.right.left);

flipcolors(h);

if (isred(h.left.left)) {

h = rotateright(h);

flipcolors(h);

}

return h;

}

// restore red-black tree invariant

// restore red-black tree invariant

private node balance(node h) {

// assert (h != null);

if (isred(h.right)) {

h = rotateleft(h);

}

if (isred(h.left) && isred(h.left.left)) {

h = rotateright(h);

}

if (isred(h.left) && isred(h.right)) {

flipcolors(h);

}

h.size = size(h.left) + size(h.right) + 1;

return h;

}

/***************************************************************************

* utility functions.

***************************************************************************/

/**

* returns the height of the bst (for debugging).

* @return the height of the bst (a 1-node tree has height 0)

*/

public int height() {

return height(root);

}

private int height(node x) {

if (x == null) {

return -1;

}

return 1 + math.max(height(x.left), height(x.right));

}

/***************************************************************************

* ordered symbol table methods.

***************************************************************************/

/**

* returns the smallest key in the symbol table.

* @return the smallest key in the symbol table

* @throws nosuchelementexception if the symbol table is empty

*/

public key min() {

if (isempty()) {

throw new nosuchelementexception("called min() with empty symbol table");

}

return min(root).key;

}

// the smallest key in subtree rooted at x; null if no such key

private node min(node x) {

// assert x != null;

if (x.left == null) {

return x;

}

else {

return min(x.left);

}

}

/**

* returns the largest key in the symbol table.

* @return the largest key in the symbol table

* @throws nosuchelementexception if the symbol table is empty

*/

public key max() {

if (isempty()) {

throw new nosuchelementexception("called max() with empty symbol table");

}

return max(root).key;

}

// the largest key in the subtree rooted at x; null if no such key

private node max(node x) {

// assert x != null;

if (x.right == null) {

return x;

}

else {

return max(x.right);

}

}

/**

* returns the largest key in the symbol table less than or equal to key.

* @param key the key

* @return the largest key in the symbol table less than or equal to key

* @throws nosuchelementexception if there is no such key

* @throws nullpointerexception if key is null

*/

public key floor(key key) {

if (key == null) {

throw new nullpointerexception("argument to floor() is null");

}

if (isempty()) {

throw new nosuchelementexception("called floor() with empty symbol table");

}

node x = floor(root, key);

if (x == null) {

return null;

}

else {

return x.key;

}

}

// the largest key in the subtree rooted at x less than or equal to the given key

private node floor(node x, key key) {

if (x == null) {

return null;

}

int cmp = key.compareto(x.key);

if (cmp == 0) {

return x;

}

if (cmp < 0) {

return floor(x.left, key);

}

node t = floor(x.right, key);

if (t != null) {

return t;

}

else {

return x;

}

}

/**

* returns the smallest key in the symbol table greater than or equal to key.

* @param key the key

* @return the smallest key in the symbol table greater than or equal to key

* @throws nosuchelementexception if there is no such key

* @throws nullpointerexception if key is null

*/

public key ceiling(key key) {

if (key == null) {

throw new nullpointerexception("argument to ceiling() is null");

}

if (isempty()) {

throw new nosuchelementexception("called ceiling() with empty symbol table");

}

node x = ceiling(root, key);

if (x == null) {

return null;

}

else {

return x.key;

}

}

// the smallest key in the subtree rooted at x greater than or equal to the given key

private node ceiling(node x, key key) {

if (x == null) {

return null;

}

int cmp = key.compareto(x.key);

if (cmp == 0) {

return x;

}

if (cmp > 0) {

return ceiling(x.right, key);

}

node t = ceiling(x.left, key);

if (t != null) {

return t;

}

else {

return x;

}

}

/**

* return the kth smallest key in the symbol table.

* @param k the order statistic

* @return the kth smallest key in the symbol table

* @throws illegalargumentexception unless k is between 0 and

* <em>n</em> − 1

*/

public key select(int k) {

if (k < 0 || k >= size()) {

throw new illegalargumentexception();

}

node x = select(root, k);

return x.key;

}

// the key of rank k in the subtree rooted at x

private node select(node x, int k) {

// assert x != null;

// assert k >= 0 && k < size(x);

int t = size(x.left);

if (t > k) {

return select(x.left, k);

}

else if (t < k) {

return select(x.right, k-t-1);

}

else {

return x;

}

}

/**

* return the number of keys in the symbol table strictly less than key.

* @param key the key

* @return the number of keys in the symbol table strictly less than key

* @throws nullpointerexception if key is null

*/

public int rank(key key) {

if (key == null) {

throw new nullpointerexception("argument to rank() is null");

}

return rank(key, root);

}

// number of keys less than key in the subtree rooted at x

private int rank(key key, node x) {

if (x == null) {

return 0;

}

int cmp = key.compareto(x.key);

if (cmp < 0) {

return rank(key, x.left);

}

else if (cmp > 0) {

return 1 + size(x.left) + rank(key, x.right);

}

else {

return size(x.left);

}

}

/***************************************************************************

* range count and range search.

***************************************************************************/

/**

* returns all keys in the symbol table as an iterable.

* to iterate over all of the keys in the symbol table named st,

* use the foreach notation: for (key key : st.keys()).

* @return all keys in the symbol table as an iterable

*/

public iterable<key> keys() {

if (isempty()) {

return new queue<key>();

}

return keys(min(), max());

}

/**

* returns all keys in the symbol table in the given range,

* as an iterable.

* @return all keys in the symbol table between lo

* (inclusive) and hi (exclusive) as an iterable

* @throws nullpointerexception if either lo or hi

* is null

*/

public iterable<key> keys(key lo, key hi) {

if (lo == null) {

throw new nullpointerexception("first argument to keys() is null");

}

if (hi == null) {

throw new nullpointerexception("second argument to keys() is null");

}

queue<key> queue = new queue<key>();

// if (isempty() || lo.compareto(hi) > 0) return queue;

keys(root, queue, lo, hi);

return queue;

}

// add the keys between lo and hi in the subtree rooted at x

// to the queue

private void keys(node x, queue<key> queue, key lo, key hi) {

if (x == null) {

return;

}

int cmplo = lo.compareto(x.key);

int cmphi = hi.compareto(x.key);

if (cmplo < 0) {

keys(x.left, queue, lo, hi);

}

if (cmplo <= 0 && cmphi >= 0) {

queue.enqueue(x.key);

}

if (cmphi > 0) {

keys(x.right, queue, lo, hi);

}

}

/**

* returns the number of keys in the symbol table in the given range.

* @return the number of keys in the symbol table between lo

* (inclusive) and hi (exclusive)

* @throws nullpointerexception if either lo or hi

* is null

*/

public int size(key lo, key hi) {

if (lo == null) {

throw new nullpointerexception("first argument to size() is null");

}

if (hi == null) {

throw new nullpointerexception("second argument to size() is null");

}

if (lo.compareto(hi) > 0) {

return 0;

}

if (contains(hi)) {

return rank(hi) - rank(lo) + 1;

}

else {

return rank(hi) - rank(lo);

}

}

/***************************************************************************

* check integrity of red-black tree data structure.

***************************************************************************/

private boolean check() {

if (!isbst()) system.out.println("not in symmetric order");

if (!issizeconsistent()) system.out.println("subtree counts not consistent");

if (!isrankconsistent()) system.out.println("ranks not consistent");

if (!is23()) system.out.println("not a 2-3 tree");

if (!isbalanced()) system.out.println("not balanced");

return isbst() && issizeconsistent() && isrankconsistent() && is23() && isbalanced();

}

// does this binary tree satisfy symmetric order?

// note: this test also ensures that data structure is a binary tree since order is strict

private boolean isbst() {

return isbst(root, null, null);

}

// is the tree rooted at x a bst with all keys strictly between min and max

// (if min or max is null, treat as empty constraint)

// credit: bob dondero's elegant solution

private boolean isbst(node x, key min, key max) {

if (x == null) {

return true;

}

if (min != null && x.key.compareto(min) <= 0) {

return false;

}

if (max != null && x.key.compareto(max) >= 0) {

return false;

}

return isbst(x.left, min, x.key) && isbst(x.right, x.key, max);

}

// are the size fields correct?

private boolean issizeconsistent() {

return issizeconsistent(root);

}

private boolean issizeconsistent(node x) {

if (x == null) {

return true;

}

if (x.size != size(x.left) + size(x.right) + 1) {

return false;

}

return issizeconsistent(x.left) && issizeconsistent(x.right);

}

// check that ranks are consistent

private boolean isrankconsistent() {

for (int i = 0; i < size(); i++) {

if (i != rank(select(i))) {

return false;

}

}

for (key key : keys()) {

if (key.compareto(select(rank(key))) != 0) {

return false;

}

}

return true;

}

// does the tree have no red right links, and at most one (left)

// red links in a row on any path?

private boolean is23() {

return is23(root);

}

private boolean is23(node x) {

if (x == null) {

return true;

}

if (isred(x.right)) {

return false;

}

if (x != root && isred(x) && isred(x.left)){

return false;

}

return is23(x.left) && is23(x.right);

}

// do all paths from root to leaf have same number of black edges?

private boolean isbalanced() {

int black = 0; // number of black links on path from root to min

node x = root;

while (x != null) {

if (!isred(x)) black++;

x = x.left;

}

return isbalanced(root, black);

}

// does every path from the root to a leaf have the given number of black links?

private boolean isbalanced(node x, int black) {

if (x == null) {

return black == 0;

}

if (!isred(x)) {

black--;

}

return isbalanced(x.left, black) && isbalanced(x.right, black);

}

/**

* unit tests the redblackbst data type.

*/

public static void main(string[] args) {

redblackbst<string, integer=""> st = new redblackbst<string, integer="">();

string data = "a b c d e f g h m n o p";

scanner sc = new scanner(data);

int i = 0;

while (sc.hasnext()) {

string key = sc.next();

st.put(key, i);

i++;

}

sc.close();

for (string s : st.keys())

system.out.println(s + " " + st.get(s));

system.out.println();

boolean result = st.check();

system.out.println("check: " + result);

}

}

输出:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14
<code>a 0

b 1

c 2

d 3

e 4

f 5

g 6

h 7

m 8

n 9

o 10

p 11

check: true</code>

总结

以上就是本文关于java算法实现红黑树完整代码示例的全部内容,希望对大家有所帮助。有什么问题可以随时留言,小编会及时回复大家的。感谢朋友们对本站的支持!

原文链接:https://www.2cto.com/kf/201608/541726.html

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。

快网idc优惠网 建站教程 java算法实现红黑树完整代码示例 https://www.kuaiidc.com/114100.html

相关文章

发表评论
暂无评论