RxJava的消息发送和线程切换实现原理

2025-05-29 0 79

rxjava是一个在java虚拟机上的响应式扩展,通过使用可观察的序列将异步和基于事件的程序组合起来的一个库。

它扩展了观察者模式来支持数据/事件序列,并且添加了操作符,这些操作符允许你声明性地组合序列,同时抽象出要关注的问题:比如低级线程、同步、线程安全和并发数据结构等。

rxjava相信大家都非常了解吧,今天分享一下rxjava的消息发送和线程源码的分析。最后并分享一个相关demo,让大家更加熟悉我们天天都在用的框架。

消息订阅发送

首先让我们看看消息订阅发送最基本的代码组成:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33
observable observable = observable.create(new observableonsubscribe<string>() {

@override

public void subscribe(observableemitter<string> emitter) throws exception {

emitter.onnext("jack1");

emitter.onnext("jack2");

emitter.onnext("jack3");

emitter.oncomplete();

}

});

observer<string> observer = new observer<string>() {

@override

public void onsubscribe(disposable d) {

log.d(tag, "onsubscribe");

}

@override

public void onnext(string s) {

log.d(tag, "onnext : " + s);

}

@override

public void onerror(throwable e) {

log.d(tag, "onerror : " + e.tostring());

}

@override

public void oncomplete() {

log.d(tag, "oncomplete");

}

};

observable.subscribe(observer);

代码很简单,observable为被观察者,observer为观察者,然后通过observable.subscribe(observer),把观察者和被观察者关联起来。被观察者发送消息(emitter.onnext("内容")),观察者就可以在onnext()方法里回调出来。

我们先来看observable,创建是用observable.create()方法进行创建,源码如下:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
public static <t> observable<t> create(observableonsubscribe<t> source) {

objecthelper.requirenonnull(source, "source is null");

return rxjavaplugins.onassembly(new observablecreate<t>(source));

}

public static <t> t requirenonnull(t object, string message) {

if (object == null) {

throw new nullpointerexception(message);

}

return object;

}

public static <t> observable<t> onassembly(@nonnull observable<t> source) {

function<? super observable, ? extends observable> f = onobservableassembly;

if (f != null) {

return apply(f, source);

}

return source;

}

可以看出,create()方法里最主要的还是创建用observableonsubscribe传入创建了一个observablecreate对象并且保存而已。

?

1

2

3

4

5

6

7

8
public final class observablecreate<t> extends observable<t> {

final observableonsubscribe<t> source;

public observablecreate(observableonsubscribe<t> source) {

this.source = source;

}

}

接着是创建observer,这比较简单只是单纯创建一个接口对象而已

?

1

2

3

4

5

6

7

8

9
public interface observer<t> {

void onsubscribe(@nonnull disposable d);

void onnext(@nonnull t t);

void onerror(@nonnull throwable e);

void oncomplete();

}

订阅发送消息

observable.subscribe(observer)的subscribe方法如下:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33
public final void subscribe(observer<? super t> observer) {

objecthelper.requirenonnull(observer, "observer is null");

try {

observer = rxjavaplugins.onsubscribe(this, observer);

objecthelper.requirenonnull(observer, "plugin returned null observer");

subscribeactual(observer);

} catch (nullpointerexception e) { // nopmd

throw e;

} catch (throwable e) {

exceptions.throwiffatal(e);

rxjavaplugins.onerror(e);

nullpointerexception npe = new nullpointerexception("actually not, but can't throw other exceptions due to rs");

npe.initcause(e);

throw npe;

}

}

//objecthelper.requirenonnull()方法

public static <t> t requirenonnull(t object, string message) {

if (object == null) {

throw new nullpointerexception(message);

}

return object;

}

//rxjavaplugins.onsubscribe()方法

public static <t> observer<? super t> onsubscribe(@nonnull observable<t> source, @nonnull observer<? super t> observer) {

bifunction<? super observable, ? super observer, ? extends observer> f = onobservablesubscribe;

if (f != null) {

return apply(f, source, observer);

}

return observer;

}

从上面源码可以看出requirenonnull()只是做非空判断而已,而rxjavaplugins.onsubscribe()也只是返回最终的观察者而已。所以关键代码是抽象方法subscribeactual(observer);那么subscribeactual对应哪个代码段呢?

还记得observable.create()创建的observablecreate类吗,这就是subscribeactual()具体实现类,源码如下:

?

1

2

3

4

5

6

7

8

9

10
protected void subscribeactual(observer<? super t> observer) {

createemitter<t> parent = new createemitter<t>(observer);

observer.onsubscribe(parent);

try {

source.subscribe(parent);

} catch (throwable ex) {

exceptions.throwiffatal(ex);

parent.onerror(ex);

}

}

从上面的代码可以看出,首先创建了一个createemitter对象并传入observer,然后回到observer的onsubscribe()方法,而source就是我们之前创建observablecreate传入的observableonsubscribe对象。

?

1

2

3

4
class createemitter<t> extends atomicreference<disposable>

implements observableemitter<t>, disposable {

}

而createemitter又继承observableemitter接口,又回调observableonsubscribe的subscribe方法,对应着我们的:

?

1

2

3

4

5

6

7

8

9
observable observable = observable.create(new observableonsubscribe<string>() {

@override

public void subscribe(observableemitter<string> emitter) throws exception {

emitter.onnext("jack1");

emitter.onnext("jack2");

emitter.onnext("jack3");

emitter.oncomplete();

}

});

当它发送消息既调用emitter.onnext()方法时,既调用了createemitter的onnext()方法:

?

1

2

3

4

5

6

7

8

9
public void onnext(t t) {

if (t == null) {

onerror(new nullpointerexception("onnext called with null. null values are generally not allowed in 2.x operators and sources."));

return;

}

if (!isdisposed()) {

observer.onnext(t);

}

}

可以看到最终又回调了观察者的onnext()方法,把被观察者的数据传输给了观察者。有人会问

isdisposed()是什么意思,是判断要不要终止传递的,我们看emitter.oncomplete()源码:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
public void oncomplete() {

if (!isdisposed()) {

try {

observer.oncomplete();

} finally {

dispose();

}

}

}

public static boolean dispose(atomicreference<disposable> field) {

disposable current = field.get();

disposable d = disposed;

if (current != d) {

current = field.getandset(d);

if (current != d) {

if (current != null) {

current.dispose();

}

return true;

}

}

return false;

}

public static boolean isdisposed(disposable d) {

return d == disposed;

}

dispose()方法是终止消息传递,也就付了个disposed常量,而isdisposed()方法就是判断这个常量而已。这就是整个消息订阅发送的过程,用的是观察者模式。

线程切换

在上面模板代码的基础上,线程切换只是改变了如下代码:

?

1

2

3
observable.subscribeon(schedulers.io())

.observeon(androidschedulers.mainthread())

.subscribe(observer);

下面我们对线程切换的源码进行一下分析,分为两部分:subscribeon()和observeon()

subscribeon()

首先是subscribeon()源码如下:

?

1

2

3

4
public final observable<t> subscribeon(scheduler scheduler) {

objecthelper.requirenonnull(scheduler, "scheduler is null");

return rxjavaplugins.onassembly(new observablesubscribeon<t>(this, scheduler));

}

我们传进去了一个scheduler类,scheduler是一个调度类,能够延时或周期性地去执行一个任务。

scheduler有如下类型:

类型 使用方式 含义 使用场景
ioscheduler schedulers.io() io操作线程 读写sd卡文件,查询数据库,访问网络等io密集型操作
newthreadscheduler schedulers.newthread() 创建新线程 耗时操作等
singlescheduler schedulers.single() 单例线程 只需一个单例线程时
computationscheduler schedulers.computation() cpu计算操作线程 图片压缩取样、xml,json解析等cpu密集型计算
trampolinescheduler schedulers.trampoline() 当前线程 需要在当前线程立即执行任务时
handlerscheduler androidschedulers.mainthread() android主线程 更新ui等

接着就没什么了,只是返回一个observablesubscribeon对象而已。

observeon()

首先看源码如下:

?

1

2

3

4

5

6

7

8

9
public final observable<t> observeon(scheduler scheduler) {

return observeon(scheduler, false, buffersize());

}

public final observable<t> observeon(scheduler scheduler, boolean delayerror, int buffersize) {

objecthelper.requirenonnull(scheduler, "scheduler is null");

objecthelper.verifypositive(buffersize, "buffersize");

return rxjavaplugins.onassembly(new observableobserveon<t>(this, scheduler, delayerror, buffersize));

}

这里也是没什么,只是最终返回一个observableobserveon对象而已。

接着还是像原来那样调用subscribe()方法进行订阅,看起来好像整体变化不大,就是封装了一些对象而已,不过着恰恰是rxjava源码的精华,当他再次调用subscribeactual()方法时,已经不是之前的observablecreate()里subscribeactual方法了,而是最先调用observableobserveon的subscribeactual()方法,对应源码如下:

?

1

2

3

4

5

6

7

8
protected void subscribeactual(observer<? super t> observer) {

if (scheduler instanceof trampolinescheduler) {

source.subscribe(observer);

} else {

scheduler.worker w = scheduler.createworker();

source.subscribe(new observeonobserver<t>(observer, w, delayerror, buffersize));

}

}

在这里有两点要讲,一点是observeonobserver是执行观察者的线程,后面还会详解,然后就是source.subscribe,这个source.subscribe调的是observablesubscribeon的subscribe方法,而subscribe方法因为继承的也是observable,是observable里的方法,所以和上面的observablecreate一样的方法,所以会调用observablesubscribeon里的subscribeactual()方法,对应的代码如下:

?

1

2

3

4

5
public void subscribeactual(final observer<? super t> s) {

final subscribeonobserver<t> parent = new subscribeonobserver<t>(s);

s.onsubscribe(parent);

parent.setdisposable(scheduler.scheduledirect(new subscribetask(parent)));

}

上面代码中,首先把observeonobserver返回给来的用subscribeonobserver“包装”起来,然后在回调observer的onsubscribe(),就是对应模板代码的onsubscribe()方法。

接着看subscribetask类的源码:

?

1

2

3

4

5

6

7

8

9

10
final class subscribetask implements runnable {

private final subscribeonobserver<t> parent;

subscribetask(subscribeonobserver<t> parent) {

this.parent = parent;

}

@override

public void run() {

source.subscribe(parent);

}

}

其中的source.subscribe(parent),就是我们执行子线程的回调方法,对应我们模板代码里的被观察者的subscribe()方法。它放在run()方法里,并且继承runnable,说明这个类主要是线程运行。接着看scheduler.scheduledirect()方法对应的源码如下:

?

1

2

3

4

5

6

7

8

9

10

11
public disposable scheduledirect(@nonnull runnable run) {

return scheduledirect(run, 0l, timeunit.nanoseconds);

}

public disposable scheduledirect(@nonnull runnable run, long delay, @nonnull timeunit unit) {

final worker w = createworker();

final runnable decoratedrun = rxjavaplugins.onschedule(run);

disposetask task = new disposetask(decoratedrun, w);

w.schedule(task, delay, unit);

return task;

}

在这里,createworker()也是一个抽象方法,调用的是我们的调度类对应的schedulers类里面的方法,这里是ioscheduler类,

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59
public final class ioscheduler extends scheduler{

final atomicreference<cachedworkerpool> pool;

//省略....

public worker createworker() {

return new eventloopworker(pool.get());

}

static final class eventloopworker extends scheduler.worker {

private final compositedisposable tasks;

private final cachedworkerpool pool;

private final threadworker threadworker;

final atomicboolean once = new atomicboolean();

eventloopworker(cachedworkerpool pool) {

this.pool = pool;

this.tasks = new compositedisposable();

this.threadworker = pool.get();

}

//省略....

@nonnull

@override

public disposable schedule(@nonnull runnable action, long delaytime, @nonnull timeunit unit) {

if (tasks.isdisposed()) {

// don't schedule, we are unsubscribed

return emptydisposable.instance;

}

return threadworker.scheduleactual(action, delaytime, unit, tasks);

}

}

}

static final class cachedworkerpool implements runnable {

//省略....

threadworker get() {

if (allworkers.isdisposed()) {

return shutdown_thread_worker;

}

while (!expiringworkerqueue.isempty()) {

threadworker threadworker = expiringworkerqueue.poll();

if (threadworker != null) {

return threadworker;

}

}

threadworker w = new threadworker(threadfactory);

allworkers.add(w);

return w;

}

//省略....

}

这就是ioscheduler的createworker()的方法,其实最主要的意思就是获取线程池,以便于生成子线程,让subscribetask()可以运行。然后直接调用 w.schedule(task, delay, unit)方法让它在线程池里执行。上面中那threadworker的源码如下:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46
static final class threadworker extends newthreadworker {

private long expirationtime;

threadworker(threadfactory threadfactory) {

super(threadfactory);

this.expirationtime = 0l;

}

//省略代码....

}

public class newthreadworker extends scheduler.worker implements disposable {

private final scheduledexecutorservice executor;

public newthreadworker(threadfactory threadfactory) {

executor = schedulerpoolfactory.create(threadfactory);

}

public scheduledrunnable scheduleactual(final runnable run, long delaytime, @nonnull timeunit unit, @nullable disposablecontainer parent) {

runnable decoratedrun = rxjavaplugins.onschedule(run);

scheduledrunnable sr = new scheduledrunnable(decoratedrun, parent);

if (parent != null) {

if (!parent.add(sr)) {

return sr;

}

}

future<?> f;

try {

if (delaytime <= 0) {

f = executor.submit((callable<object>)sr);

} else {

f = executor.schedule((callable<object>)sr, delaytime, unit);

}

sr.setfuture(f);

} catch (rejectedexecutionexception ex) {

if (parent != null) {

parent.remove(sr);

}

rxjavaplugins.onerror(ex);

}

return sr;

}

}

可以看到,这就调了原始的javaapi来进行线程池操作。

然后最后一环在子线程调用source.subscribe(parent)方法,然后回调刚开始创建的observablecreate的subscribeactual(),既:

?

1

2

3

4

5

6

7

8

9

10
protected void subscribeactual(observer<? super t> observer) {

createemitter<t> parent = new createemitter<t>(observer);

observer.onsubscribe(parent);

try {

source.subscribe(parent);

} catch (throwable ex) {

exceptions.throwiffatal(ex);

parent.onerror(ex);

}

}

进行消息的订阅绑定。

当我们在调用 emitter.onnext(内容)时,是在io线程里的,那回调的onnext()又是什么时候切换的?那就是前面为了整个流程流畅性没讲的在observeon()里的observeonobserver是执行观察者的线程的过程。

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58
class observeonobserver<t> extends basicintqueuedisposable<t>

implements observer<t>, runnable {

//省略代码....

observeonobserver(observer<? super t> actual, scheduler.worker worker, boolean delayerror, int buffersize) {

this.actual = actual;

this.worker = worker;

this.delayerror = delayerror;

this.buffersize = buffersize;

}

@override

public void onsubscribe(disposable s) {

if (disposablehelper.validate(this.s, s)) {

this.s = s;

if (s instanceof queuedisposable) {

@suppresswarnings("unchecked")

queuedisposable<t> qd = (queuedisposable<t>) s;

int m = qd.requestfusion(queuedisposable.any | queuedisposable.boundary);

if (m == queuedisposable.sync) {

sourcemode = m;

queue = qd;

done = true;

actual.onsubscribe(this);

schedule();

return;

}

if (m == queuedisposable.async) {

sourcemode = m;

queue = qd;

actual.onsubscribe(this);

return;

}

}

queue = new spsclinkedarrayqueue<t>(buffersize);

actual.onsubscribe(this);

}

}

@override

public void onnext(t t) {

if (done) {

return;

}

if (sourcemode != queuedisposable.async) {

queue.offer(t);

}

schedule();

}

void schedule() {

if (getandincrement() == 0) {

worker.schedule(this);

}

}

//省略代码....

}

当调用emitter.onnext(内容)方法,会调用上面的onnext()方法,然后在这个方法里会把数据压入一个队列,然后执行worker.schedule(this)方法,work是什么呢,还记得androidschedulers.mainthread()吗,这个对应这个handlerscheduler这个类,所以createworker()对应着:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36
private static final class mainholder {

static final scheduler default = new handlerscheduler(new handler(looper.getmainlooper()));

}

public worker createworker() {

return new handlerworker(handler);

}

private static final class handlerworker extends worker {

private final handler handler;

private volatile boolean disposed;

handlerworker(handler handler) {

this.handler = handler;

}

@override

public disposable schedule(runnable run, long delay, timeunit unit) {

if (run == null) throw new nullpointerexception("run == null");

if (unit == null) throw new nullpointerexception("unit == null");

if (disposed) {

return disposables.disposed();

}

run = rxjavaplugins.onschedule(run);

scheduledrunnable scheduled = new scheduledrunnable(handler, run);

message message = message.obtain(handler, scheduled);

message.obj = this; // used as token for batch disposal of this worker's runnables.

handler.sendmessagedelayed(message, unit.tomillis(delay));

if (disposed) {

handler.removecallbacks(scheduled);

return disposables.disposed();

}

return scheduled;

}

}

在next()方法里,运用android自带的handler消息机制,通过把方法包裹在message里,同通过handler.sendmessagedelayed()发送消息,就会在ui线程里回调next()方法,从而实现从子线程切换到android主线程的操作。我们在主线程拿到数据就可以进行各种在主线程的操作了。

总结一下:

RxJava的消息发送和线程切换实现原理

observablecreate 一> observablesubscribeon 一> observableobserveon为初始化顺序

当调用observable.subscribe(observer)时的执行顺序
observableobserveon 一> observablesubscribeon 一> observablecreate

当发送消息的执行顺序
observablecreate 一> observablesubscribeon 一> observableobserveon

以上就是消息订阅和线程切换的源码的所有讲解了。

为了让你们理解更清楚,我仿照rxjava写了大概的消息订阅和线程切换的最基本代码和基本功能,以帮助你们理解

https://github.com/jack921/rxjava2demo

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持快网idc。

原文链接:https://www.jianshu.com/p/264b68fd96fa

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。

快网idc优惠网 建站教程 RxJava的消息发送和线程切换实现原理 https://www.kuaiidc.com/111165.html

相关文章

发表评论
暂无评论