高并发服务优化篇:详解一次由读写锁引起的内存泄漏

2025-05-29 0 39

高并发服务优化篇:详解一次由读写锁引起的内存泄漏

JVM相关的异常,一直是一线研发比较头疼的问题。因为对于业务代码,JVM的运行基本算是黑盒,当异常发生时,较难直观的看到和找到问题所在,这也是我们一直要研究其内部逻辑的原因。

本篇就由一个近期线上JVM内存泄漏的例子,带大家强行分析一波~

Part1 线上服务器报警了

某天,同事来找我帮忙,原来是某系统毫无征兆的来了一连串报警,一波机器的老年代内存占用率超过阈值~

1.1先看表现

高并发服务优化篇:详解一次由读写锁引起的内存泄漏

老年代内存占用

可以看到,在7月中旬之前,内存占用还是比较正常的,每次GC都可以回收掉很大一部分的老年代对象。

而中旬之后,老年代内存一直缓慢增长而无法释放。很明显,应该是对象没法被正常回收导致。

内存泄漏了~

1.2 怎么办呢

如果是刚上线的项目爆出了此类问题,因为影响面比较小,可以直接先回滚代码,止血为第一要务。

不过,这个项目明显已经上线N多天,中间还不知道上过多少需求,而且,既然流量近期有上涨导致问题出现,说明,已经对客开流量了。

回滚是不可能了,抓紧时间定位问题,上线修复吧。

Part2 定位问题

一般的步骤:

  • 拿到dump文件
  • 用MAT等工具,找出内存占用过多的异常对象,以及引用关系
  • 分析异常对象关联代码的可能问题

不过,因为这次dump下来的文件十多G,太大的,MAT基本无能为力,只能打印出来人工分析了

2.1 定位问题代码

高并发服务优化篇:详解一次由读写锁引起的内存泄漏

jmap结果查看

很幸运,异常对象非常明显。Point对象和GeoDispLocal对象,居然多达好几百万实例数,那就先看下代码中这两个对象是怎么用的。

  1. privatestaticfinalCacheMap<String,List<GeoDispLocal>>NEAR_DISTRICT_CACHE=newCacheMap<String,List<GeoDispLocal>>(3600*1000,1000);
  2. privatestaticfinalCacheMap<Integer,Point>LOCAL_POINT_CACHE=newCacheMap<Integer,Point>(3600*1000,6000);

都是被存放在本次缓存CacheMap中(内存泄漏的一个常见原因,就是因为被静态集合持有,无法回收导致),而dump文件中的CacheMap.Entry也是非常高的。

CacheMap就是我们的第一优先怀疑对象了。先看下这个缓存类是怎么回事:

  1. ublicclassCacheMap<K,V>{
  2. privatefinallongexpireMs;
  3. privateLRUMap<K,CacheMap.Entry<V>>valueMap;
  4. //其他略
  5. }

内部依赖一个带LRU功能的map,怎么实现的呢:

  1. publicclassLRUMap<K,V>extendsLinkedHashMap<K,V>{
  2. privatestaticfinallongserialVersionUID=1L;
  3. privatefinalintmaxCapacity;
  4. //这个map不会扩容
  5. privatestaticfinalfloatLOAD_FACTOR=0.99f;
  6. privatefinalReadWriteLocklock=newReentrantReadWriteLock();
  7. publicLRUMap(intmaxCapacity){
  8. super(maxCapacity,LOAD_FACTOR,true);
  9. this.maxCapacity=maxCapacity;
  10. }
  11. @Override
  12. protectedbooleanremoveEldestEntry(java.util.Map.Entry<K,V>eldest){
  13. returnsize()>maxCapacity;
  14. }
  15. @Override
  16. publicVget(Objectkey){
  17. try{
  18. lock.readLock().lock();
  19. returnsuper.get(key);
  20. }finally{
  21. lock.readLock().unlock();
  22. }
  23. }
  24. @Override
  25. publicVput(Kkey,Vvalue){
  26. try{
  27. lock.writeLock().lock();
  28. returnsuper.put(key,value);
  29. }finally{
  30. lock.writeLock().unlock();
  31. }
  32. }
  33. //removeclear略
  34. }

内部是一个依赖LinkedHashMap实现的LRU缓存。看注释,目的是要构建一个限定容量、且不会进行扩容的MAP(百度了一波,和网上的实现一模一样~)。那么,实际情况真的和想象中的一样么?。

2.2 LinkedHashMap实现的LRUMap好使么

我们来看容量和扩容相关的设置:为什么设计者认为该LRUMap不会进行扩容?

  1. //**把容量和扩容相关的参数摘出来**
  2. //用户期望的最大容量
  3. privatefinalintmaxCapacity;
  4. //加载系数
  5. privatestaticfinalfloatLOAD_FACTOR=0.99f;
  6. //构造函数中调用LinkedHashMap进行初始化
  7. super(maxCapacity,LOAD_FACTOR,true);
  8. @Override//复写删除最久元素条件方法
  9. protectedbooleanremoveEldestEntry(java.util.Map.Entry<K,V>eldest){
  10. //当LinkedHashMap.size比我们限定容量大时,执行删除
  11. returnsize()>maxCapacity;
  12. }

按我们的实际使用实例化一下:

  • maxCapacity=6000,是我们希望的最大元素容量。
  • load_factor=0.99 加载因子。
  • Map内部threshold=8192*0.99=8110,是那么下次扩容时的容量大小。(map中table容量的真实大小是离6000最近的2的N次幂,即8192)。

因为复写了LRU条件函数,当size>6000时会进行LRU替换。因此,理论上,size永远不会达到8110。

怎么解决并发下的读写冲突呢?

  1. //读写锁
  2. privatefinalReadWriteLocklock=newReentrantReadWriteLock();
  3. publicVget(Objectkey){
  4. try{
  5. lock.readLock().lock();
  6. returnsuper.get(key);
  7. }finally{
  8. lock.readLock().unlock();
  9. }
  10. }
  11. publicVput(Kkey,Vvalue){
  12. try{
  13. lock.writeLock().lock();
  14. returnsuper.put(key,value);
  15. }finally{
  16. lock.writeLock().unlock();
  17. }
  18. }

设计者为了解决并发下的读写冲突,给查询和修改方法加了锁,为了兼顾性能,使用了读写锁:在get的时候加读锁,在put/remove的时候加写锁。

看起来,整个设计很好的解决了LRUMap的固定容量和并发操作问题,那么事实是什么样的呢?

其实,这个问题很早就有人分析过了[1] ,是因为LinkedHashMap在get读操作的时候,会为了维护LRU从而进行元素修改,即将get到的元素转移到链表最后。这样,就导致了读写并发问题,但这个解释感觉朦朦胧胧,因此,我决定在其基础上对读写并发问题再讲细致一些。

2.3 LinkedHashMap内存泄漏拆解

都加了读写锁为什么不好使呢?

这里我们还是需要先明确,读写锁的概念和适用场景:读写锁,允许多个线程共享读锁,适用于读多写少的情况。(前提是,读操作不会改变存储结构)

所以,问题就发生在get操作上,LinkedHashMap的get操作被重写,目的是为了实现LRU功能,在get之后,将当前节点移动到链表最后。

移动啊,同志们,这明显是一个写操作,所以,加读锁还有用么?

即允许多线程进入,又进行了修改,那还能起什么作用,能没有并发问题么?

下面,对照节点移动的代码,详细拆解一下多线程下的并发问题:

高并发服务优化篇:详解一次由读写锁引起的内存泄漏

get之后的节点移动,将节点移动到最后

实际拆解分析如下,为什么在多线程的情况下,会出现内存泄漏

高并发服务优化篇:详解一次由读写锁引起的内存泄漏

时间片下多线程的get执行

我们看到,在线程1执行完前两句,让出了时间片,当线程2执行到p.after=null之后又出让了时间片,这样,本来a应该是后面的<2,B>节点,结果多线程下变成了null,最终,后面两个节点被踢出了链表,删除操作无法触达,造成内存泄漏

验证的代码就不贴了,大家有兴趣可以自己试一下~

Part3 总结

话说回来,既然定位到了问题,这个内存泄漏怎么修复呢?

可以把读写锁改成互斥锁。或者直接用分布式存储,能慢多少呢,是不是,既方便,简单,又免得为了节约机器内存自己构造LRUMap。

每一个八股文都不只是为了面试,而是每次线上问题排查的基石。千万别把八股文的作用定位错了。。。

原文链接:https://mp.weixin.qq.com/s/UPCIgL0_SLyOF5SNFgL27w

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。

快网idc优惠网 建站教程 高并发服务优化篇:详解一次由读写锁引起的内存泄漏 https://www.kuaiidc.com/109281.html

相关文章

发表评论
暂无评论