本文实例分析了PHP动态规划解决0-1背包问题。分享给大家供大家参考。具体分析如下:
背包问题描述:一个承受最大重量为W的背包,现在有n个物品,每个物品重量为t, 每个物品的价值为v。
要使得这个背包重量最大(但不能超过W),同时又需要背包的价值最大。
思路:定义一个二维数组,一维为物品数量(表示每个物品),二维是重量(不超过最大,这里是15),下面数组a,
动态规划原理思想,max(opt(i-1,w),wi+opt(i-1,w-wi)) 当中最大值,
opt(i-1,w-wi)指上一个最优解
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
<?php
//这是我根据动态规划原理写的
// max(opt(i-1,w),wi+opt(i-1,w-wi))
//背包可以装最大的重量
$w =15;
//这里有四件物品,每件物品的重量
$dx = array (3,4,5,6);
//每件物品的价值
$qz = array (8,7,4,9);
//定义一个数组
$a = array ();
//初始化
for ( $i =0; $i <=15; $i ++){ $a [0][ $i ]=0; }
for ( $j =0; $j <=4; $j ++){ $a [ $j ][0]=0; }
//opt(i-1,w),wi+opt(i-1,w-wi)
for ( $j =1; $j <=4; $j ++){
for ( $i =1; $i <=15; $i ++){
$a [ $j ][ $i ]= $a [ $j -1][ $i ];
//不大于最大的w=15
if ( $dx [ $j -1]<= $w ){
if (!isset( $a [ $j -1][ $i - $dx [ $j -1]])) continue ;
//wi+opt(i-1,wi)
$tmp = $a [ $j -1][ $i - $dx [ $j -1]]+ $qz [ $j -1];
//opt(i-1,w),wi+opt(i-1,w-wi) => 进行比较
if ( $tmp > $a [ $j ][ $i ]){
$a [ $j ][ $i ]= $tmp ;
}
}
}
}
//打印这个数组,输出最右角的值是可以最大价值的
for ( $j =0; $j <=4; $j ++){
for ( $i =0; $i <=15; $i ++){
echo $a [ $j ][ $i ]. "/t" ;
} echo "/n" ;
}
?>
|
希望本文所述对大家的php程序设计有所帮助。
相关文章
猜你喜欢
- 个人网站搭建:如何挑选具有弹性扩展能力的服务器? 2025-06-10
- 个人服务器网站搭建:如何选择适合自己的建站程序或框架? 2025-06-10
- 64M VPS建站:能否支持高流量网站运行? 2025-06-10
- 64M VPS建站:怎样选择合适的域名和SSL证书? 2025-06-10
- 64M VPS建站:怎样优化以提高网站加载速度? 2025-06-10
TA的动态
- 2025-07-10 怎样使用阿里云的安全工具进行服务器漏洞扫描和修复?
- 2025-07-10 怎样使用命令行工具优化Linux云服务器的Ping性能?
- 2025-07-10 怎样使用Xshell连接华为云服务器,实现高效远程管理?
- 2025-07-10 怎样利用云服务器D盘搭建稳定、高效的网站托管环境?
- 2025-07-10 怎样使用阿里云的安全组功能来增强服务器防火墙的安全性?
快网idc优惠网
QQ交流群
您的支持,是我们最大的动力!
热门文章
-
2025-05-29 92
-
2025-05-27 88
-
2025-05-27 56
-
2025-05-25 59
-
2025-05-29 57
热门评论